Download the Free Fishpond App!
Download on the App Store

Android App on Google play

Already own it?

Sell Yours
Home » Books » Science » Mathematics » Differential Equations

Stability by Linearization of Einstein's Field Equation

Progress in Mathematical Physics

By Lluis Bruna, Joan Girbau

$166  
Price includes NZ wide delivery!
Ships from Europe
New or Used: 3 copies from $171.09
Rating:
 
Register or sign-in to rate and get recommendations.
Format: Hardcover, 208 pages
Published In: Switzerland, 01 February 2010
V ? V ?K? , 3 2 2 R ? /?x K i i g V T G g ?T , ? G g g 4 ? R ? ? G ? T g g ? h h ? 2 2 2 2 ? ? ? ? ? ? ? h ?S , ?? ?? 2 2 2 2 2 c ?t ?x ?x ?x 1 2 3 S T S T? T?. ? ~ T S 2 2 2 2 ? ? ? ? ? ? ? h . ?? 2 2 2 2 2 c ?t ?x ?x ?x 1 2 3 g h h ?? g T T g vacuum M n R n R Acknowledgements n R Chapter I Pseudo-Riemannian Manifolds I.1 Connections M C n X M C M F M C X M F M connection covariant derivative M ? X M xX M ?? X M X,Y ?? Y X ? Y ? Y ? Y X +X X X 1 2 1 2 ? Y Y ? Y ? Y X 1 2 X 1 X 2 ? Y f? Y f?F M fX X ? fY X f Y f? Y f?F M X X ? torsion ? Y?? X X,Y X,Y?X M . X Y localization principle Theorem I.1. Let X, Y, X , Y be C vector ?elds on M.Let U be an open set

Table of Contents

Preface // I Pseudo-Riemannian Manifolds: I.1 Connections / I.2 Firsts results on pseudo-Riemannian manifolds / I.3 Laplacians / I.4 Sobolev spaces of tensors on Riemannian manifolds / I.5 Lorentzian manifolds // II Introduction to Relativity: II.1 Classical fluid mechanics / II.2 Kinematics of the special relativity / II.3 Dynamics of special relativity / II.4 General relativity / II.5 Cosmological models / II. 6 Appendix: a theorem in affine geometry // III. Approximation of Einstein's Equation by the Wave Equation: III.1 Perturbations of Ricci tensor / III.2 Einstein's equation for small perturbations of the Minkowski metric / III.3 Action on metrics of diffeomorphisms close to identity / III.4 Continuing the calculation of Section 2 / III.5 Comparison with the classical gravitation // IV. Cauchy Problem for Einstein's Equation with Matter: IV.1 1. Differential operators in an open set of Rn+1 / IV.2 Differential operators in vector bundles / IV.3 Harmonic maps / IV.4 Admissible classes of stress-energy tensors / IV.5 Differential operator associated to Einstein's equation / IV.6 Constraint equations / IV.7 Hyperbolic reduction / IV.8 Fundamental theorem / IV.9 An example: the stress-energy tensor of holonomic media / IV.10 The Cauchy problem in the vacuum // V. Stability by Linearization of Einstein's Equation, General Concepts: V.1 Classical concept of stability by linearization of Einstein's equation in the vacuum / V.2 A new concept of stability by linearization of Einstein's equation in the presence of matter / V.3 How to apply the definition of stability by linearization of Einstein's equation in the presence of matter / V.4 Change of notation / V.5 Technical details concerning the map f / V.6 Tangent linear map of f // VI. General Results on Stability by Linearization when the Submanifold M of V is Compact: IV.1 1. Adjoint of D(g,k) f / VI.2 Results by A. Fischer and J. E. Marsden / VI.3 A result by V. Moncrief / VI.4 Appendix: general results on elliptic operators in compact manifolds // VII. Stability by Linearization of Einstein's Equation at Minkowski's Initial Metric: VII.1 A further expression of D(g,k) f / VII.2 The relation between Euclidean Laplacian and stability by linearization at the initial Minkowski's metric / VII.3 Some proofs on topological isomorphisms in Rn / VII.4 Stability of the Minkowski metric: Y. Choquet-Bruhat and S. Deser's result / VII.5 The Euclidean asymptotic case: generalization of a result by Y. Choquet-Bruhat, A. Fischer and J. E. Marsden // VIII. Stability by Linearization of Einstein's Equation in Robertson-Walker Cosmological Models: VIII.1 Euclidean model / VIII.2 Hyperbolic model / VIII.3 Sobolev spaces and hyperbolic Laplacian / VIII.4 Spherical model / VIII.5 Universes that are not simply connected // References

Reviews

From the reviews:"The authors of the book under review have contributed to this subject over the last ten years by studying the linearization stability for Einstein's equations with source terms and in cosmological solutions. Here they present the results in a systematic fashion accessible to a reader with some background in differential geometry and partial differential equations." (Hans-Peter Kunzle, Mathematical Reviews, Issue 2011 h)

EAN: 9783034603034
ISBN: 3034603037
Publisher: Birkhauser Basel
Dimensions: 23.11 x 15.49 x 1.78 centimetres (0.52 kg)
Age Range: 15+ years
Tell a friend

Their Email:

Sell Yours

Already own this item?
Sell Yours and earn some cash. It's fast and free to list! (Learn More.)

Review this Product

BAD GOOD
 

Related Searches

 

Webmasters, Bloggers & Website Owners

You can earn a 5% commission by selling Stability by Linearization of Einstein's Field Equation (Progress in Mathematical Physics) on your website. It's easy to get started - we will give you example code. After you're set-up, your website can earn you money while you work, play or even sleep!

 

Authors/Publishers

Are you the Author/Publisher? Improve sales by submitting additional information on this title.

 

This item ships from and is sold by Fishpond World Ltd.