Australasia's Biggest Online Store

We won't be beaten by anyone. Guaranteed

Pro Spark Streaming

Learn the right cutting-edge skills and knowledge to leverage Spark Streaming to implement a wide array of real-time, streaming applications. This book walks you through end-to-end real-time application development using real-world applications, data, and code. Taking an application-first approach, each chapter introduces use cases from a specific industry and uses publicly available datasets from that domain to unravel the intricacies of production-grade design and implementation. The domains covered in Pro Spark Streaming include social media, the sharing economy, finance, online advertising, telecommunication, and IoT. In the last few years, Spark has become synonymous with big data processing. DStreams enhance the underlying Spark processing engine to support streaming analysis with a novel micro-batch processing model. Pro Spark Streaming by Zubair Nabi will enable you to become a specialist of latency sensitive applications by leveraging the key features of DStreams, micro-batch processing, and functional programming. To this end, the book includes ready-to-deploy examples and actual code. Pro Spark Streaming will act as the bible of Spark Streaming. What You'll Learn Discover Spark Streaming application development and best practices Work with the low-level details of discretized streams Optimize production-grade deployments of Spark Streaming via configuration recipes and instrumentation using Graphite, collectd, and Nagios Ingest data from disparate sources including MQTT, Flume, Kafka, Twitter, and a custom HTTP receiver Integrate and couple with HBase, Cassandra, and Redis Take advantage of design patterns for side-effects and maintaining state across the Spark Streaming micro-batch model Implement real-time and scalable ETL using data frames, SparkSQL, Hive, and SparkR Use streaming machine learning, predictive analytics, and recommendations Mesh batch processing with stream processing via the Lambda architecture Who This Book Is For Data scientists, big data experts, BI analysts, and data architects.
Product Details

Table of Contents

Chapter 1: Introduction to SparkChapter Goal: Introduce the reader to Spark in general. This book does not assume that the reader is already familiar with Spark. Sub -Topics Introduction to Spark and its key selling points The programming model Architecture Introduction to other systems within the ecosystem, such as MLlib, GraphX, SparkSQL, and SparkR Chapter 2: Spark StreamingChapter Goal: Introduces Spark Streaming and the concept of micro batch processing (DStreams) Sub - Topics Introduction to Spark Streaming/DStreams Comparison with traditional stream processing How Spark Streaming works under the hood Programming API and how it relates to the general Spark API First sample application using FileInputDStream Chapter 3: Best PracticesChapter Goal: To transfer best practices in terms of application development Sub - Topics: Maintaining state in an application Data caching to reduce redundant work Offloading RDD maintenance to Tachyon Fault-tolerance and check-pointing Chapter 4: Ingesting data from external data sourcesChapter Goal: To enable the reader to understand the various data ingestion options, their pros and cons, and their integration with Spark Streaming Sub - Topics: 1. Introduction to Receivers 2. Kafka 3. Twitter 4. Flume 5. Other sources 6. Writing your own connector. Example Apache Qpid Chapter 5: Optimizing and maintaining a Spark Streaming application/deploymentChapter Goal: To help the user in optimizing an application and how it can be maintained in production Sub - Topics Different configuration parameters and how they affect the application Parallelism Serialization, memory, etc. enhancements Various monitoring and instrumentation options Chapter 6: Spark Streaming, SQL, and RChapter Goal: To illustrate how a SQL/Dataframe interface can simplify common transforms Introduction to SparkSQL and SQLContext Various SQL constructs Integration with R Design of a few real-world applications Chapter 7: Streaming Machine LearningChapter Goal: Employ MLlib to implement streaming machine learning applications Introduction to streaming algorithms in MLlib Real-world applications using streaming MLlib Chapter 8: Lambda Architecture using SparkChapter Goal: Blending data at rest with data in motion Introduction to the Lambda Architecture Design of Lambda Architecture using Spark Chapter 9: Java and Python APIs for Spark StreamingChapter Goal: Introduction to Spark Streaming in Java and Python Java API Python API Chapter 10: Spark Streaming and BeyondChapter Goal: Overview of some of the future plans for Spark Streaming from the ope n source community Project Tungsten and how its CPU and memory improvements can benefit streaming applications Links to useful resources

About the Author

Zubair Nabi is one of the very few computer scientists who have solved Big Data problems in all three domains: academia, research, and industry. He currently works at Qubit, a London-based start up backed by Goldman Sachs, Accel Partners, Salesforce Ventures, and Balderton Capital. Qubit helps retailers understand their customers and provide personalized customer experience, and which has a rapidly growing client base that includes Staples, Emirates, Thomas Cook, and Topshop. Prior to Qubit, he was a researcher at IBM Research, where he worked at the intersection of Big Data systems and analytics to solve real-world problems in the telecommunication, electricity, and urban dynamics space. Zubair's work has been featured in MIT Technology Review, SciDev, CNET, and Asian Scientist, and on Swedish National Radio, among others. He has authored more than 20 research papers, published by some of the top publication venues in computer science including USENIX Middleware, ECML PKDD, and IEEE BigData; and he also has a number of patents to his credit. Zubair has an MPhil in computer science with distinction from Cambridge.

Look for similar items by category
People also searched for
How Fishpond Works
Fishpond works with suppliers all over the world to bring you a huge selection of products, really great prices, and delivery included on over 25 million products that we sell. We do our best every day to make Fishpond an awesome place for customers to shop and get what they want — all at the best prices online.
Webmasters, Bloggers & Website Owners
You can earn a 5% commission by selling Pro Spark Streaming: The Zen of Real-Time Analytics Using Apache Spark on your website. It's easy to get started - we will give you example code. After you're set-up, your website can earn you money while you work, play or even sleep! You should start right now!
Authors / Publishers
Are you the Author or Publisher of a book? Or the manufacturer of one of the millions of products that we sell. You can improve sales and grow your revenue by submitting additional information on this title. The better the information we have about a product, the more we will sell!
Item ships from and is sold by Fishpond World Ltd.
Back to top