SmartSellTM - The New Way to Sell Online

We won't be beaten by anyone. Guaranteed

Principles of Mathematical Analysis
By

Rating
Product Details

Chapter 1: The Real and Complex Number SystemsIntroductionOrdered SetsFieldsThe Real FieldThe Extended Real Number SystemThe Complex FieldEuclidean SpacesAppendixExercisesChapter 2: Basic TopologyFinite, Countable, and Uncountable SetsMetric SpacesCompact SetsPerfect SetsConnected SetsExercisesChapter 3: Numerical Sequences and SeriesConvergent SequencesSubsequencesCauchy SequencesUpper and Lower LimitsSome Special SequencesSeriesSeries of Nonnegative TermsThe Number eThe Root and Ratio TestsPower SeriesSummation by PartsAbsolute ConvergenceAddition and Multiplication of SeriesRearrangementsExercisesChapter 4: ContinuityLimits of FunctionsContinuous FunctionsContinuity and CompactnessContinuity and ConnectednessDiscontinuitiesMonotonic FunctionsInfinite Limits and Limits at InfinityExercisesChapter 5: DifferentiationThe Derivative of a Real FunctionMean Value TheoremsThe Continuity of DerivativesL'Hospital's RuleDerivatives of Higher-OrderTaylor's TheoremDifferentiation of Vector-valued FunctionsExercisesChapter 6: The Riemann-Stieltjes IntegralDefinition and Existence of the IntegralProperties of the IntegralIntegration and DifferentiationIntegration of Vector-valued FunctionsRectifiable CurvesExercisesChapter 7: Sequences and Series of FunctionsDiscussion of Main ProblemUniform ConvergenceUniform Convergence and ContinuityUniform Convergence and IntegrationUniform Convergence and DifferentiationEquicontinuous Families of FunctionsThe Stone-Weierstrass TheoremExercisesChapter 8: Some Special FunctionsPower SeriesThe Exponential and Logarithmic FunctionsThe Trigonometric FunctionsThe Algebraic Completeness of the Complex FieldFourier SeriesThe Gamma FunctionExercisesChapter 9: Functions of Several VariablesLinear TransformationsDifferentiationThe Contraction PrincipleThe Inverse Function TheoremThe Implicit Function TheoremThe Rank TheoremDeterminantsDerivatives of Higher OrderDifferentiation of IntegralsExercisesChapter 10: Integration of Differential FormsIntegrationPrimitive MappingsPartitions of UnityChange of VariablesDifferential FormsSimplexes and ChainsStokes' TheoremClosed Forms and Exact FormsVector AnalysisExercisesChapter 11: The Lebesgue TheorySet FunctionsConstruction of the Lebesgue MeasureMeasure SpacesMeasurable FunctionsSimple FunctionsIntegrationComparison with the Riemann IntegralIntegration of Complex FunctionsFunctions of Class L2ExercisesBibliographyList of Special SymbolsIndex