Fishpond Gift Vouchers - Let them choose!

Shop over a million Toys in our Huge New Range

Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques
By

Rating
Product Details

Table of Contents

List of Figures xv Foreword xxiii Preface xxv Acknowledgments xxix Chapter 1 Fraud: Detection, Prevention, and Analytics! 1 Introduction 2 Fraud! 2 Fraud Detection and Prevention 10 Big Data for Fraud Detection 15 Data-Driven Fraud Detection 17 Fraud-Detection Techniques 19 Fraud Cycle 22 The Fraud Analytics Process Model 26 Fraud Data Scientists 30 A Fraud Data Scientist Should Have Solid Quantitative Skills 30 A Fraud Data Scientist Should Be a Good Programmer 31 A Fraud Data Scientist Should Excel in Communication and Visualization Skills 31 A Fraud Data Scientist Should Have a Solid Business Understanding 32 A Fraud Data Scientist Should Be Creative 32 A Scientific Perspective on Fraud 33 References 35 Chapter 2 Data Collection, Sampling, and Preprocessing 37 Introduction 38 Types of Data Sources 38 Merging Data Sources 43 Sampling 45 Types of Data Elements 46 Visual Data Exploration and Exploratory Statistical Analysis 47 Benford's Law 48 Descriptive Statistics 51 Missing Values 52 Outlier Detection and Treatment 53 Red Flags 57 Standardizing Data 59 Categorization 60 Weights of Evidence Coding 63 Variable Selection 65 Principal Components Analysis 68 RIDITs 72 PRIDIT Analysis 73 Segmentation 74 References 75 Chapter 3 Descriptive Analytics for Fraud Detection 77 Introduction 78 Graphical Outlier Detection Procedures 79 Statistical Outlier Detection Procedures 83 Break-Point Analysis 84 Peer-Group Analysis 85 Association Rule Analysis 87 Clustering 89 Introduction 89 Distance Metrics 90 Hierarchical Clustering 94 Example of Hierarchical Clustering Procedures 97 k-Means Clustering 104 Self-Organizing Maps 109 Clustering with Constraints 111 Evaluating and Interpreting Clustering Solutions 114 One-Class SVMs 117 References 118 Chapter 4 Predictive Analytics for Fraud Detection 121 Introduction 122 Target Definition 123 Linear Regression 125 Logistic Regression 127 Basic Concepts 127 Logistic Regression Properties 129 Building a Logistic Regression Scorecard 131 Variable Selection for Linear and Logistic Regression 133 Decision Trees 136 Basic Concepts 136 Splitting Decision 137 Stopping Decision 140 Decision Tree Properties 141 Regression Trees 142 Using Decision Trees in Fraud Analytics 143 Neural Networks 144 Basic Concepts 144 Weight Learning 147 Opening the Neural Network Black Box 150 Support Vector Machines 155 Linear Programming 155 The Linear Separable Case 156 The Linear Nonseparable Case 159 The Nonlinear SVM Classifier 160 SVMs for Regression 161 Opening the SVM Black Box 163 Ensemble Methods 164 Bagging 164 Boosting 165 Random Forests 166 Evaluating Ensemble Methods 167 Multiclass Classification Techniques 168 Multiclass Logistic Regression 168 Multiclass Decision Trees 170 Multiclass Neural Networks 170 Multiclass Support Vector Machines 171 Evaluating Predictive Models 172 Splitting Up the Data Set 172 Performance Measures for Classification Models 176 Performance Measures for Regression Models 185 Other Performance Measures for Predictive Analytical Models 188 Developing Predictive Models for Skewed Data Sets 189 Varying the Sample Window 190 Undersampling and Oversampling 190 Synthetic Minority Oversampling Technique (SMOTE) 192 Likelihood Approach 194 Adjusting Posterior Probabilities 197 Cost-sensitive Learning 198 Fraud Performance Benchmarks 200 References 201 Chapter 5 Social Network Analysis for Fraud Detection 207 Networks: Form, Components, Characteristics, and Their Applications 209 Social Networks 211 Network Components 214 Network Representation 219 Is Fraud a Social Phenomenon? An Introduction to Homophily 222 Impact of the Neighborhood: Metrics 227 Neighborhood Metrics 228 Centrality Metrics 238 Collective Inference Algorithms 246 Featurization: Summary Overview 254 Community Mining: Finding Groups of Fraudsters 254 Extending the Graph: Toward a Bipartite Representation 266 Multipartite Graphs 269 Case Study: Gotcha! 270 References 277 Chapter 6 Fraud Analytics: Post-Processing 279 Introduction 280 The Analytical Fraud Model Life Cycle 280 Model Representation 281 Traffic Light Indicator Approach 282 Decision Tables 283 Selecting the Sample to Investigate 286 Fraud Alert and Case Management 290 Visual Analytics 296 Backtesting Analytical Fraud Models 302 Introduction 302 Backtesting Data Stability 302 Backtesting Model Stability 305 Backtesting Model Calibration 308 Model Design and Documentation 311 References 312 Chapter 7 Fraud Analytics: A Broader Perspective 313 Introduction 314 Data Quality 314 Data-Quality Issues 314 Data-Quality Programs and Management 315 Privacy 317 The RACI Matrix 318 Accessing Internal Data 319 Label-Based Access Control (LBAC) 324 Accessing External Data 325 Capital Calculation for Fraud Loss 326 Expected and Unexpected Losses 327 Aggregate Loss Distribution 329 Capital Calculation for Fraud Loss Using Monte Carlo Simulation 331 An Economic Perspective on Fraud Analytics 334 Total Cost of Ownership 334 Return on Investment 335 In Versus Outsourcing 337 Modeling Extensions 338 Forecasting 338 Text Analytics 340 The Internet of Things 342 Corporate Fraud Governance 344 References 346 About the Authors 347 Index 349

About the Author

BART BAESENS is a full professor at KU Leuven, and a lecturer at the University of Southampton. He has done extensive research on analytics, customer relationship management, web analytics, fraud detection, and credit risk management. He regularly advises and provides consulting support to international firms with respect to their analytics and credit risk management strategy. VERONIQUE VAN VLASSELAER is a PhD researcher in the Department of Decision Sciences and Information Management at KU Leuven. Her research focuses on the development of new techniques for fraud detection by combining predictive and network analytics. WOUTER VERBEKE is an assistant professor at Vrije Universiteit Brussel (Brussels, Belgium). His research is situated in the field of predictive analytics and complex network analysis with applications in fraud, marketing, credit risk, human resources management, and mobility.

Ask a Question About this Product More...
Write your question below:
Look for similar items by category
Home » Books » Computers » Security » Networking
Home » Books » Business » Management » General
Home » Books » Nonfiction » Crime » General
How Fishpond Works
Fishpond works with suppliers all over the world to bring you a huge selection of products, really great prices, and delivery included on over 25 million products that we sell. We do our best every day to make Fishpond an awesome place for customers to shop and get what they want — all at the best prices online.
Webmasters, Bloggers & Website Owners
You can earn a 5% commission by selling Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques: A Guide to Data Science for Fraud Detection (Wiley and SAS Business Series) on your website. It's easy to get started - we will give you example code. After you're set-up, your website can earn you money while you work, play or even sleep! You should start right now!
Authors / Publishers
Are you the Author or Publisher of a book? Or the manufacturer of one of the millions of products that we sell. You can improve sales and grow your revenue by submitting additional information on this title. The better the information we have about a product, the more we will sell!
Item ships from and is sold by Fishpond.com, Inc.
Back to top