The Finite Element Method for Solid and Structural Mechanics
By

Rating

Product Description
Product Details

Table of Contents

General Problems in solid mechanics and non-linearity; Galerkin method of approximation - irreducible and mixed forms; Solution of non-linear algebraic equations; Inelastic and non-linear materials; Geometrically non-linear problems - finite deformation; Material constitution for finite deformation; Treatment of Constraints - contact and tied interfaces; Pseudo-Rigid & Rigid-Flexible Bodies; Discrete element methods; Structural Mechanics Problems in One Dimension - rods; Plate Bending Approximation; Thick Reissner-Mindlin Plates -Irreducible & Mixed Formulations; Shells as an assembly of flat elements; Curved rods and axisymmetric shells; Shells as a special case of three-dimensional analysis; Semi-analytical finite element processes; Non-linear structural processes - large displacement and instability; Multiscale modelling; Computer procedures for finite element analysis; Appendices

Promotional Information

* Dedicated coverage of solid and structural mechanics
* New material on multi-scale modelling
* Accompanied by downloadable algorithms

About the Author

O. C. Zienkiewicz was one of the early pioneers of the finite element method and is internationally recognized as a leading figure in its development and wide-ranging application. He was awarded numerous honorary degrees, medals and awards over his career, including the Royal Medal of the Royal Society and Commander of the British Empire (CBE). He was a founding author of The Finite Element Method books and developed them through six editions over 40 years up to his death in 2009. Previous positions held by O.C. Zienkiewicz include UNESCO Professor of Numerical Methods in Engineering at the International Centre for Numerical Methods in Engineering, Barcelona, Director of the Institute for Numerical Methods in Engineering at the University of Wales, Swansea, U.K. R.L Taylor is Professor of the Graduate School at the Department of Civil and Environmental Engineering, University of California at Berkeley, USA. Awarded the Daniel C. Drucker Medal by the American Society of Mechanical Engineering in 2005, the Gauss-Newton Award and Congress Medal by the International Association for Computational Mechanics in 2002, and the Von Neumann Medal by the US Association for Computational Mechanics in 1999.

Reviews

"..the pre-eminent reference work on finite element analysis." Applied Mechanical Review

Ask a Question About this Product More...
 
This title is unavailable for purchase as none of our regular suppliers have stock available. If you are the publisher, author or distributor for this item, please visit this link.

Back to top